MOTORS(U) ARHY MISSILE COMMAND REDSTONE ARSENAL AL PROPULSION DIRECTORATE J 5 LILLEY APR 84
UNCLASSIFIED DRSMI/RK-84-4-TR SBI-AD-E950 554

F/G 21/8. 2
NL

TECHNICAL REPORT RK-84-4
AD-A144 856
A MODEL FOR GRAIN MISALIGNMENT IN CYLINDRICAL PORT MOTORS

Jay S. Lilley Propulsion Directorate US Army Missile Laboratory

APRIL 1984

Ø.S.ARMY MISSILE SOMMAND Fedstone Arsenal, Alabama 35898

Cleared for Public Release; Distribution Unlimited.
OTR FILE COPP

B

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

17. DISTRIEUTION STATEMENT (of the abatsact entered in Block 20, if difforent from Roport)

This report presents a mathematical model of the geometry of the propellant grain of a cylindrical port motor cast with a misaligned mandrel. Also presented is an HP-41C calculator program which incorporates this model, and an example demonstrating the application of the misaligned motor geometry.
Page No.
I. INTRODUCTION 1
II. GENERAL 1
III. MANDREL MISALIGNMENT 2
IV. MOTOR GEOMETRY 8
A. Displaced Mandrel 8
B. Cocked Mandrel 10
v. CONCLUSIONS 18
REFERENCES 19
APPENDIX A. HP-41C PROGRAM A-1
APPENDIX B. MISALIGNED 2×4 MOTOR B-1

I. INTRODUCTION

The purpose of this report is to present a mathemetical model of the geometry of a cylindrical port motor cast with a misaligned maidrel. This model was developed to determine the burning surface area and free volume of such motors.

This report also includes a detailed description of the geometry model. In formulating this model, two basic types of mandrel misalignment were considered: mandrel displacement and mandrel cocking. In addition to the model description, two appendices are included. Appendix A presents an HP-41C calculator program and Appendix B presents an example of the application of the geometric model.

The details presented in this report are the result of work conducted at the Propulsion Directorate of the US Army Missile Command. The purpose of this work was to obtain a better insight into the geometrical nature of mandrel misalignment.

II. GENERAL

The cylindrical port grain is one of the most versatile and widely used solid rocket motor configurations. This motor geometry is widely employed throughout the industry. One of the more common applications of cylindrical port grains is in subscale ballistic test motors. The characterization of propellant burning rates is one of the primary uses of the subscale test motors. Typically, when a cylindrical port motor is employed in burning rate characterization, the motor is designed with a burning surface area profile that is essentially constant with respect to web distance burned. Thus, when fired, the motor will operate at a relatively constant chamber pressure. The burning rate of the propellant, at the average operating pressure of the motor, is determined by dividing the web thickness of the motor by the burn time. This entire analysis method is based on the assumption that the web thickness of the motor is a known quantity. Therefore, it is essential to this method that the web distance be uniform over the entire length of the grain. As a result of this assumption, a major source of experimental error in the determination of burning rate from ballistic test motor firings is ballistic test motors that do not have a uniform web.

The major cause of variations in the web thickness for cylindrical port motors is mandrel misalignment. Mandrel misalignment essentially means that when the motor was cast the axis of symmetry of the mandrel (and thus of the motor port) did not colncide with the axis of symmetry of the motor case. This condition causes a variation of the web thickness over the length of the grain which means that the burning surface will not contact the motor case wall uniformly. As a result, the burning rate analysis method which is based on the assumption that the entire burning surface contacts the motor case wall at the same instant and is rendered useless.

Since the cylindrical port motor is such a basic propellant development tool, it is essential to obtain a better understanding of the influences of mandrel misalignment on the performance of such motors. The first step in obtaining this understanding is to acquire a knowledge of the geometry of misaligned motors. It should be noted that the effects of mandrel misalignment on the performance of solid rockets were extensively investigated by Maykut [1]. The purpose of these studies was to investigate the effact of various grain asymmetries on the delivered impulse of a rocket motor. In these studies a generalized grain geometry computer code was employed. One feature of this code was the ability to solve for the surface histories of various asymmetric propellant grains [2]. While this code was capable of analyzing the geometry of a misaligned cylindrical port motor, the general nature of the code made it somewhat cumbersome to use. As a result, it was considered advantageous to independently develop a geometry model for the specific class of motors considered in this study.

III. MANDREL MISALIGNMENT

The first step in considering mandrel misalignment in a cylindrical port rocket motor is to consider the general geometry of the motor. In a perfectly aligned motor, the port of the grain and the motor case will have the same axis of symmetry. Figure 1 shows the geometry of such a motor. The problem created by mandrel misalignment is that the motor port and motor case do not have a common axis of symmetry. In order to begin evaluation of the nature of mandrel misalignment, first consider the case where the port and case axes are parallel but do not coincide. A cross-section of the motor taken through a plane perpendicular to the axes of symmetry will reveal circular port and motor case crosssections. These circles are not, however, concentric. As the propellant port burns out radially the radius of the port will increase. Eventially one point on the port cross-section will contact the case wall. This point defines the region where the misaligned motor differs from the perfectly aligned motor. Until the point of contact the aligned and misaligned motors will exhibit the same burning surface area history.

For the aligned motor, wall contact occurs along the entire periphery and thus indicates the time of motor burnout, while for the misaligned motor, wall contact creates a sliver zone. This sliver zone is the cross-sectional area of propellant remaining at the point of first wall contact. The misaligned motor will continue to operate as the sliver zone burns out. This sliver zone has a surface area that decreases as web distance burned increases. The sliver will result in an extended motor tail-off on the pressure-time trace for the misaligned motor. Figure 2 presents the burning profile for a misaligned crosssection.

The next step is to develop a mathematical model of the misaligned crosssection. Consider the misaligned port for the propellant grain at a given cross-section:

The radius of the propellant grain is given by:

$$
\begin{equation*}
R(\tau)=R(0)+\tau \tag{1}
\end{equation*}
$$

Figure 1. Cross-section of cylindrical port motor (perfectly alined).

Figure 2. $\frac{\text { Cross-section burn profile for C-P grain cast with }}{\text { misaligned mandrel. }}$

Where:
$R(\tau)$ is the radius of the grain
$R(0)$ is the initial grain radius
and τ is the web distance burned.
The intersection of the propellant port and the motor case is given by the coordinates:

$$
\left(X_{I}, \pm Y_{I}\right)
$$

If
$R(\tau)<R_{C}-\Delta X$

There is no intersection
If

$$
\begin{align*}
& R(\tau) \geq R_{C}-\Delta X \\
& X_{I}=\frac{R^{2}(\tau)-R_{C}^{2}-\Delta X^{2}}{2 \Delta X} \tag{2}
\end{align*}
$$

$Y_{I}=\sqrt{R_{C}^{2}-X_{I}^{2}}$
Where
R_{C} is the inside radius of the motor case
ΔX is the magnitude of the mandrel offset
X_{I} is the X-coordinate of the intersection and
Y_{I} is the Y-coordinate of the intersection.
The perimeter of the burning surface of propellant at a given crosssectional plane is given by:

$$
\begin{equation*}
P(\tau)=\frac{\pi}{180} \quad \theta R(\tau) \tag{4}
\end{equation*}
$$

Where:
If

$$
\begin{align*}
& R(\tau) \leq R_{C}-\Delta X \\
& \theta_{1}=360^{\circ} \tag{5}
\end{align*}
$$

If

$$
\begin{align*}
& X_{I}<-\Delta X \\
& \theta_{1}=360^{\circ}-2 \operatorname{Tan}^{-1} \frac{Y_{I}}{-\Delta X-X_{I}} \tag{6}
\end{align*}
$$

If

$$
\begin{align*}
X_{I} & =-\Delta X \\
\theta_{1} & =180^{\circ} \tag{7}
\end{align*}
$$

If

$$
\begin{align*}
& X_{I}>-\Delta X \\
& \theta_{1}=2 \mathrm{TAN}^{-1} \quad \frac{Y_{I}}{X_{I}+\Delta X} \tag{8}
\end{align*}
$$

Where:

$$
\mathrm{P}(\tau) \text { is the perimeter of the propellant. }
$$

The cross-sectional area of propellant at a given cross-sectional plane is given by:

$$
\begin{equation*}
A_{c r}(\tau)=\frac{\pi}{360}\left(R_{c}^{2} \theta_{2}-R^{2}(\tau) \theta_{1}\right)+2 A_{1} \tag{9}
\end{equation*}
$$

Where
If

$$
\begin{align*}
& \mathrm{R}(\tau) \leq \mathrm{R}_{\mathrm{c}}-\Delta \mathrm{X} \\
& \theta_{2}=360^{\circ} \tag{10}\\
& \mathrm{A}_{1}=0 \tag{11}
\end{align*}
$$

If

$$
\begin{align*}
& \mathrm{X}_{\mathrm{I}}<0 \\
& \theta_{2}=360^{\circ}-2 \mathrm{TAN}^{-1} \frac{\mathrm{Y}_{I}}{-\mathrm{X}_{\mathrm{I}}} \tag{12}
\end{align*}
$$

If

$$
\begin{align*}
& \mathrm{X}_{\mathrm{I}}=0 \\
& \theta_{2}=180^{\circ} \tag{13}\\
& \text { If }
\end{align*}
$$

$$
\begin{align*}
& \mathrm{X}_{\mathrm{I}}>0 \\
& \theta_{2}=2 \operatorname{TAN}^{-1} \quad \frac{\mathrm{Y}_{\mathrm{I}}}{\mathrm{X}_{\mathrm{I}}} \tag{14}
\end{align*}
$$

And

$$
\begin{equation*}
A_{1}=\left[S(S-\Delta X)(S-R(\tau))\left(S-R_{c}\right)\right]^{1 / 2} \tag{15}
\end{equation*}
$$

Where:

$$
\begin{equation*}
S=1 / 2\left(\Delta X+R(\tau)+R_{C}\right) \tag{16}
\end{equation*}
$$

Where:
$A_{C r}(\tau)$ is the propellant cross-sectional area
At a cross-sectional plane, the distance for the shortest propellant web is given by:

$$
\begin{equation*}
\tau_{s w}=R_{c}-R(0)-\Delta X \tag{17}
\end{equation*}
$$

The web distance for total propellant burnout at a cross-section is given by:

$$
\begin{equation*}
\tau_{\mathrm{pbo}}=\mathrm{R}_{\mathrm{c}}-\mathrm{R}(0)+\Delta \mathrm{X} \tag{18}
\end{equation*}
$$

A complete cross-sectional view of the propellant grain is shown in Figure 3.

Figure 3. Cross-sectional view of C-P grain cast with an offset mandrel.

With the cross-sectional geometry of the propellant grain completely detailed, the next step is to consider the geometry of the entire motor. In order to consider the motor geometry a set of coordinate systems must be established. Two coordinate systems will be considered, one for the motor case and one for the mandrel. Descriptions of the coordinate systems are as follows:

For the motor case -
X - An axis in a plane perpendicular to the axis of symmetry of the motor case
Y - An axis in the same plan as the X-axis and perpendicular to the X axis and the axis of symmetry of the motor case

Z - The axis of symmetry of the motor case.
For the mandrel -
\bar{X} - An axis in a plane perpendicular to the axis of symmetry of the mandrel
$\bar{Y}-A n$ axis in the same plane as the \bar{X}-axis and perpendicular to the \bar{X} axis and the axis of symmetry of the mandrel
$\overline{\mathrm{Z}}$ - The axis of symmetry of the mandrel.
Two possible cases of mandrel misalignment will be considered. The first case is a displaced mandrel and the second is a cocked mandrel. The following are descriptions of the two resulting motor geometries.
A. Displaced Mandrel

In the case of the displaced mandrel, the assumption is made that the sides of the mandrel are parallel to walls of the motor case but the axis of symmetry of the mandrel (Z-axis) is displaced a distance ΔX from the axis of symmetry of the motor_case (Z -axis). Thus, the X and \bar{X} axes are colinear, the Y and \bar{Y}, and the Z and \bar{Z} axes, respectively, are parallel. The geometry is presented in Figure 4.

Figure 4. Displaced mandrel configuration.

For the displaced mandrel the propellant cross-section at each Z coordinate is the same. Therefore, for a given web distance burned the propellant perimeter and cross-sectional area are constant with respect to 2. Thus, the propellant burning surface area is given by:

$$
\begin{equation*}
A_{b}(\tau)=L(\tau) P(\tau)+A_{c r}(\tau) N_{e b} \tag{19}
\end{equation*}
$$

Where
R (τ) is given by Equation (1)

$$
\begin{equation*}
\text { and } \quad \mathrm{L}(\tau)=\mathrm{L}(0)-2 \tau \mathrm{~N}_{\mathrm{eb}} \tag{20}
\end{equation*}
$$

Where
$A_{b}(\tau)$ is the burning surface area of the motor
$L(\tau)$ is the length of the grain
L (0) is the initial length of the grain and
$N_{\text {eb }}$ is the number of ends that are burning.
The free volume of the motor is given by:
$V(\tau)=\pi R_{c}{ }^{2} L(0)-L(\tau) A_{c r}(\tau)$

Where
$V(\tau)$ is the free volume of the motor.
B. Cocked Mandrel

In the case of the cocked mandrel two general geometries will be considered. These are a mandrel that is cocked at the top of the motor case and a mandrel that is cocked at both the top and the bottom of the motor case. The following presents the details of the two geometries.

1. Mandrel Cocked With Respect to the Motor Case Top

In the case of the cocked mandrel the assumption is made that the axis of symmetry of the mandrel (\bar{Z}-axis) is cocked with respect to the axis of symmetry of the motor case (2 -axis). In the case where the mandrel is cocked with the respect to the top of the motor case, the assumption is made that the coordinate systems of the motor case and the mandrel have the same origin. However, the $\bar{X}-\bar{Y}-\bar{Z}$ coordinate system is created by_rotating the $X-Y-Z$ system about the Y-axis. Therefore, the $X-, Z^{-}, \bar{X}-$, and \bar{Z}-axes are coplanar and the $Y-$ and \bar{Y}-axes are identical. The geometry is presented in Figure 5.

Figure 5. Cocked mandrel configuration (cocked at top).

In order to determine the geometry of a grain created with a cocked mandrel three simplifying assumptions are implied. These are:
a. Axial distances_along the propellant grain will be determined along the z -axis instead of the $\overline{\mathrm{z}}$-axis.
b. The propellant cross-section of the unburned portion in the $X-Y$ plane is circular instead of elliptical.
$\bar{X}-Y$ plane.
c. The propellant burns radially, in the $X-Y$ plane instead of the

These assumptions are justified by the fact that the angle between the Z and \bar{Z} axes (which is the same angle between the X and \bar{X} axes) will be very small and thus the cosine of the included angle will be very close to unity. In order for distances along the $\overline{\mathrm{z}}$-axis to exceed distances along the z -axis by more than $.1 \%$ the included angle must exceed 2.5°. This angle should be well within the region of mandrel misalignment that is normally encountered. Thus, because of the very small included angle the unburned propellant port should be essentially circular in the $X-Y$ plane. Also, this small included angle means that web distances burned along the X-axes are essentially unchanged when projected on the X-axis. And finally, the effects of assumptions a. and c. above tend to cancel each other and thus increase the accuracy.

The geometry of a propellant grain cast with a cocked mandrel can be considered to experience four distinct phases as the motor progresses from the initial state to motor burnout. These four phases are:

PHASE 1. The port of the propellant is totally circular. The short propellant web had not burned out at any axial cross-section.

PHASE 2. The short propellant web has burned out for crosssections in upper portion of the grain. The remainder of the grain has a circular port.

PHASE 3. The short propellant web had burned out for the entire length of the grain. There are no cross-sections for which total propellant burn out has occurred.

PHASE 4. The cross-section at the bottom of the motor has experienced total propellant burn out.

The next step is to consider the geometry of the motor during each of the following four phases:

PHASE 1

$$
0 \leq \tau \leq \tau_{1}
$$

Where

$$
\begin{align*}
& \tau_{I}=\frac{R_{c}-R(0)-\Delta X_{T}}{\left(1-\frac{\Delta X_{T} N_{t o p}}{L(0)}\right)} \tag{22}\\
& \Delta X_{T}=\Delta x(Z=L(0)) \tag{23}
\end{align*}
$$

Where
τ_{1} is the web distance burned for short web burn out at the top of the grain.
$N_{\text {top }}=0$ If the top end is inhibited
$=1$ If the top end is uninhibited
and $\Delta \mathrm{X}_{\mathrm{T}}$ is the initial off-set of the mandrel axis at the top of the grain. The burning area of the motor is:

$$
\begin{equation*}
A_{b}(\tau)=P(\tau) L(\tau)+\left(N_{\text {bot }}+N_{t o p}\right) A_{c r}(\tau) \tag{24}
\end{equation*}
$$

Where

$$
\begin{equation*}
L(\tau)=L(0)-\tau\left(N_{\text {bot }}+N_{\text {top }}\right) \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
N_{\text {bot }}=0 \text { If the bottom is inhibited } \tag{26}
\end{equation*}
$$

$=1$ If the bottom is uninhibited
and for all phases

$$
R(\tau) \text { is determined from Equation (1) }
$$

The free volume of the motor is given by Equation (21).
PHASE 2

$$
\tau_{1} \leq \tau<\tau_{2}
$$

Where

$$
\begin{equation*}
\tau_{2}=\frac{R_{c}-R(0)}{\left(1+\frac{N_{b o t} \Delta X_{T}}{L(0)}\right)} \tag{28}
\end{equation*}
$$

Where

τ_{2} is the web distance burned for short web burn out at the bottom of the grain

The burning surface area of the motor is given by:

$$
\begin{gathered}
A_{b}(\tau)=P\left(\tau, z_{b o t}\right)\left(z_{u b}-z_{b o t}\right)+\int_{Z_{u b}}^{Z_{t o p}} P(\tau, z) d z \\
+N_{b o t} A_{c r}\left(\tau, z_{b o t}\right)+N_{\text {top }} A_{c r}\left(\tau, z_{\text {top }}\right)
\end{gathered}
$$

Where
$Z_{\text {bot }}$ - is the Z-coordinate of the bottom of the grain
$Z_{u b}$ - is the Z-coordinate at which the cross-section is at the exact point of short web burn out and
$Z_{\text {top }}-1 s$ the Z-coordinate of the top of the grain.
Where

$$
\begin{align*}
& \mathrm{Z}_{\text {bot }}(\tau)=\tau \mathrm{N}_{\text {bot }} \tag{30}\\
& \mathrm{Z}_{\mathrm{ub}}(\tau)=\frac{\mathrm{L}(0)\left(\mathrm{R}_{\mathrm{c}}-\mathrm{R}(0)-\tau\right)}{\Delta \mathrm{X}_{\mathrm{T}}} \tag{31}\\
& \mathrm{Z}_{\text {top }}(\tau)=\mathrm{L}(0)-\tau \mathrm{N}_{\text {top }}
\end{align*}
$$

and note that for all phases:

$$
\begin{equation*}
\Delta x(Z)=\Delta x_{T} \frac{z}{L(0)} \tag{33}
\end{equation*}
$$

The integral term can be approximated by applying the trapezoidal rule over 11 points:

$$
\begin{equation*}
\int_{Z_{u b}}^{Z_{\text {top }}} P(\tau, z) d z=\frac{\Delta z}{2} \quad \sum_{i=1}^{10}\left(P\left(\tau, z_{i}\right)+P\left(\tau, Z_{i}-\Delta Z\right)\right) \tag{34}
\end{equation*}
$$

Where:

$$
\begin{align*}
& \Delta z=\frac{z_{\text {top }}(\tau)-z_{u b}^{(\tau)}}{10} \tag{35}\\
& z_{i}=z_{u b}+i(\Delta z) \quad i=1,2, \ldots, 10 \tag{36}
\end{align*}
$$

Thus, the burning surface area is given by:

$$
\begin{align*}
& A_{b}(\tau)=P\left(\tau, z_{b o t}\right)\left(z_{u b}-z_{b o t}\right)+\frac{\Delta z}{2} \sum_{i=1}^{10}\left(P\left(\tau, z_{i}\right)+P\left(\tau, z_{i}-\Delta z\right)\right) \\
& +N_{b o t} A_{c r}\left(\tau, Z_{b o t}\right)+N_{\text {top }} A_{c r}\left(\tau, z_{\text {top }}\right)
\end{align*}
$$

The free volume of the motor is given by:

$$
\begin{equation*}
V(\tau)=\pi R_{c}^{2} L(0)-A_{c r}\left(\tau, Z_{b o t}\right)\left(Z_{u b}-Z_{b o t}\right)-\int_{Z_{u b}}^{Z_{t o p}} A_{c r}(\tau, Z) d z \tag{38}
\end{equation*}
$$

This can be approximated by:

$$
\begin{align*}
& V(\tau)=\pi R_{c}^{2} L(0)-A_{c r}\left(\tau, Z_{b o t}\right)\left(Z_{u b}-Z_{b o t}\right) \\
& \left.-\frac{\Delta Z}{2} \sum_{i=1}^{10} A_{c r}\left(\tau, Z_{i}\right)+A_{c r}\left(\tau, Z_{i}-\Delta Z\right)\right) \tag{39}
\end{align*}
$$

The grain length is given in Equation (25).
PHASE 3

$$
\tau_{2} \leq \tau<\tau_{3}
$$

Where

$$
\begin{equation*}
\tau_{3}=\frac{R_{c}-R(0)}{\left(1-\frac{\Delta X_{T} N_{\text {top }}}{L(0)}\right)} \tag{40}
\end{equation*}
$$

Where
τ_{3} is the web distance burned for total propellant burn out at the bottom cross-section.

The burning surface area of the motor is given by:

$$
\begin{equation*}
A_{b}(\tau)=\int_{Z_{\text {bot }}}^{Z_{\text {top }}} P(\tau, z) d z+N_{\text {bot }} A_{c r}\left(\tau, Z_{\text {bot }}\right)+N_{\text {top }} A_{c r}\left(\tau, Z_{\text {top }}\right) \tag{41}
\end{equation*}
$$

This can be approximated by:

$$
\begin{align*}
& A_{b}(\tau)=\frac{\Delta Z}{2} \sum_{i=1}^{10}\left(P\left(\tau, z_{i}\right)+P\left(\tau, z_{i}-\Delta Z\right)\right) \tag{42}\\
& \quad+N_{\text {bot }} A_{c r}\left(\tau, Z_{\text {bot }}\right)+N_{\text {top }} A_{c r}\left(\tau, z_{\text {top }}\right)
\end{align*}
$$

Where
$Z_{\text {bot }}(\tau)$ is determined from Equation (30) and
$z_{\text {top }}(\tau)$ is determined from Equation (32)

$$
\begin{equation*}
\Delta Z=\frac{\mathrm{z}_{\text {top }}(\tau)-\mathrm{z}_{\text {bot }}(\tau)}{10} \tag{43}
\end{equation*}
$$

and $z_{i}=Z_{\text {bot }}+i(\Delta Z) \quad i=1,2, \ldots ., 10$
The free volume of the motor is given by:

$$
\begin{equation*}
V(\tau)=\pi R_{c}^{2} L(0)-\int_{Z_{\text {bot }}}^{Z_{\text {top }}} A_{c r}(\tau, z) d z \tag{45}
\end{equation*}
$$

This can be approximated by:

$$
V(\tau)=\pi R_{c}{ }^{2} L(0)-\frac{\Delta Z}{2} \sum_{i=1}^{10}\left(A_{c r}\left(\tau, z_{i}\right)+A_{c r}\left(\tau, Z_{i}-\Delta z\right)\right)
$$

The grain length is given in Equation (25).

PHASE 4

$$
\tau_{3} \leq \tau<\tau_{\text {mbo }}
$$

where

$$
\begin{equation*}
\tau_{\text {mbo }}=\frac{\mathrm{R}_{\mathrm{c}}-\mathrm{R}(0)+\Delta \mathrm{X}_{\mathrm{T}}}{\left(1+\frac{\Delta \mathrm{x}_{\mathrm{T}} \mathrm{~N}_{\text {top }}}{\mathrm{L}(0)}\right)} \tag{47}
\end{equation*}
$$

Where
$\tau_{\text {mbo }}$ is the web distance burned for total motor propellant burn out.
The relationships for burning surface area and motor free volume are the same as those presented for Phase 3 with the exception that:

$$
\begin{equation*}
\mathrm{z}_{\text {bot }}(\tau)=\left(\tau-\mathrm{R}_{\mathrm{C}}-\mathrm{R}(0)\right) \frac{\mathrm{L}(0)}{\Delta X_{T}} \tag{48}
\end{equation*}
$$

The length of the propellant grain is given by:

$$
\begin{equation*}
\mathrm{L}(\tau)=\mathrm{z}_{\mathrm{top}}(\tau)-\mathrm{z}_{\mathrm{bot}}(\tau) \tag{49}
\end{equation*}
$$

2. Mandrel cocked with respect to both the motor case bottom and top

A variation of the cocked mandrel geometry can be achieved by considering the case where the mandrel is cocked at both the top and bottom of the motor case. In this case the $\overline{\mathrm{z}}$ - axis is created by rotating the z -axis about an axis which is parallel to the Y -axis and that passes through the centroid of the unburned propellant grain. This geometry is shown in Figure 6.

The geometry of propellant grain can be determined by applying the relationships derived from the situation where mandrel is cocked about the bottom of the motor case.

The burning surface area of the propellant grain is given by:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}(\tau)=2 \mathrm{~A}_{\mathrm{b}}\left(\tau, \mathrm{~L}(0), \mathrm{N}_{\mathrm{bot}}\right) \tag{50}
\end{equation*}
$$

Where:

$$
A_{b}\left(\tau, L(0), N_{b o t}\right)
$$

is the surface area determined for a propellant grain created by a mandrel cocked at the top only.

Figure 6. Cocked mandrel configuration (cocked at bottom and top).
The inputs to the burning surface area relationships are:

$$
\begin{equation*}
L(0)=\frac{L^{\prime}(0)}{2} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\text {bot }}=0 \tag{52}
\end{equation*}
$$

Where
$L^{\prime}(0)$ is the initial length of the propellant grain created by a mandrel cocked at both the bottom and top.

Likewise the free volume of motor is given by:

$$
\begin{equation*}
V(\tau)=2 V\left(\tau, L(0), N_{\text {bot }}\right) \tag{53}
\end{equation*}
$$

Note that these relationships apply only for the cases where either the top and bottom of the grain are both inhibited or both uninhibited.

Thus,

$$
\begin{equation*}
\text { if } N_{\text {top }}=0 \text { both ends are inhibited } \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } N_{\text {top }}=1 \text { both ends are uninhibited } \tag{55}
\end{equation*}
$$

Also, note that the geometry for grains which were generated by cocking the mandrel about horizontal axes located on various points on the Z-axis can also be determined from the previous relationships. These results can be obtained by adding the results for two appropriate motor geometries which were cocked at the top of the motor case.

V. CONCLUSIONS

The mathematical model presented in this report provides a means to determine the geometrical profile of cylindrical port motors cast with misaligned mandrels. This model should serve as a valuable tool in determining the effect of mandrel misalignment on the pressure-time traces of ballistic test motors. In this application the model could be used to make some determination on the accuracy of burning rate data obtained from motors with various degrees of misalignments. Thus, this model could be used to establish a set of criteria for the accuracy of burning rate data obtained from cylindrical port ballistic test motors.

REFERENCES

1. Maykut, A.R., Technology for Improving Solid Rocket Motor Reproducibility, US Army Missile Command, Redstone Arsenal, AL, October 1976. Technical Report RK-77-2.
2. Chan, G. 0. and Cull, N. R., Asymmetric Grain Evaluation Computer Program, US Army Missile Command, Redstone Arsenal, AL, October 1974, (Prepared by Aerojet Solid Propulsion Company under Contract DAAHOl-74-C-0434).
3. Lilley, J. S., PERSHING II 6 X 6 Firing Burning Rate Anomaly, US Army Missile Command, Redstone Arsenal, AL, September 1983, Letter Report RK-83-13.
4. Owner's Handbook and Programming Guide: HP-41C/CV, Hewlett Packard Company, 1980.

APPENDIX A

HP-41C PROGRAM

The mathematical model presented in this report has been incorporated into a program for an HP-4IC calculator. This appendix is intended to provide all the information required to install and operate this program. This program, when installed on an HP-4l calculator system, will prove to be a useful analysis tool. The program as presented will provide the user with a convenient and accurate method for evaluating the geometry of misaligned cylindrical port motors. The following provides complete operating instructions, a set of sample problems, and a listing of the program. Also provided is all the required storage register and calculator status information needed to implement the program.

A. Operating Instruction

In order to implement the program presented in this report the following equipment is required:

1 - HP-41CV calculator
or
1 - HP-41C calculator with 1 HP 82170A quad memory module
1 HP 83143A thermal printed/plotter
or
1-HP 83162A thermal printer/ploter with HP 82160A HP-IL module
To operate the program the printer should be mated with the calculator in the appropriate manner. The calculator should then be configured to size 43 and placed in the user mode. Table A-l provides a step by step key sequence required to operate this program.

TABLE A-1. Program Instructions

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1.	Load Program.			
2.	Clear all resisters,		XEQ[CLRG]	
3.	Initialize program.		$\Sigma+$	THIS PROGRAM DETERMINES THE GEOMETRY OF CP GRAIN WITH AN OFF CENTER OR COCKED MANDREL
4.	Key in case radius.	R_{c}	R/S	COCKED? $\mathrm{Y}=1, \quad \mathrm{~N}=0$
5.	Indicate if the mandrel is cocked.	1 or 0	R/S	
5.a	If mandrel is cocked.	1	R/S	COCKED AT TOP ONLY $\mathrm{Y}=1, \mathrm{~N}=0$
5.b	If mandrel is not cocked go to Step 6.	0	R/S	LGRAIN = ?
5.b.1	If mandrel is cocked indicate if it is cocked at the top only.	1 or 0	R/S	
5.b.1.a	If mandrel is cocked at top only.	1	R/S	$\begin{aligned} & \text { BOTTOM BURNING } \\ & Y=1, \quad N=0 \end{aligned}$
5.b.1.b	If mandrel is not cocked at the top only, go to Step 5.b.2.	0	R/S	TOP BURNING $\mathrm{Y}=1, \quad \mathrm{~N}=0$
5.b. 2	If mandrel is cocked at top only indicate if the bottom is burning.	$\mathrm{N}_{\text {bot }}$	R/S	TOP BURNING $\mathrm{Y}=1, \quad \mathrm{~N}=0$
5.b.2.a	If mandrel is cocked indicate if the top is burning.	$\mathrm{N}_{\text {top }}$	R/S	LGRAIN = ?

Table A-1. Program Instructions - Continued

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
6.	Key in grain length.	L(0)	R/S	RGRAIN $=$?
7.	Key in grain radius.	R(0)	R/S	
$7 . a$	If grain is cocked go to Step 8.			OFF SET $=$?
7.b	If grain is not cocked.			NO. END BURN = ?
7.b.1	If grain is not cocked enter number of ends burning.	N_{eb}	K/S	OFF SET = ?
8.	Key in mandrel off set.	$\Delta \mathrm{X}$ or $\Delta \mathrm{X}_{T}$	R/S	TAU START = ?
9.	Key in starting web distance burned.	$\tau_{\text {start }}$	R/S	TAU STOP = ?
10.	Key in stopping web distance burned.	$\tau_{\text {stop }}$	R/S	
10.a	If start and stop are equal go to step 11.			
10.b	If start and stop are not equal.			DELTA TAU \% = ?
10.b. 1	If start and stop are not equal enter the web distance increment then go to step 11 .	$\Delta \tau$	R/S	
11.	Write program run information.			
11.a	If mandrel is not cocked.			GEOMETRY FOR CP GRAIN WITH AN OFFSET OF X.XXXXX IN AND X ENDS BURNING SHORT WEB $=$ X. XXXXXX MAX WEB $=\mathrm{X} . \mathrm{XXXXXX}$

Table A-1. Program Instructions - Continued

STEP	INSTRUCTIONS INPUT	FUNCTION	DISPLAY
11.b	If mandrel is cocked at the top and bottom.		GEOMETRY FOR COCKED CP GRAIN WITH AN OFF SET OF X.XXXXX IN AND X ENDS BURNING SHORT WEB $=$ X. XXXXXX MAX WEB $=$ X. XXXXXX
$11 . \mathrm{c}$	If mandrel is cocked at the top only.		GEOMETRY FOR COCKED AT TOP ONLY CP GRAIN WITH AN OFFSET OF X.XXXXXX IN AND X ENDS BURNING SHORT WEB $=$ X. XXXXXX MAX WEB $=$ X. XXXXXX
12.	Display motor geometries for web distance burned values from $\tau_{\text {start }}$ to $\tau_{\text {stop }}$ in increments of $\Delta \tau$. Also display the geometry for the point of short web burn out. In addition program will stop at $\tau_{\text {mbo }}$ if $\tau_{\text {stop }}$ exceeds Tmbo.		```TAU = X.XXXXXXX IN % Web = XX.XXXX% Ab = XXX.XXXX SQ In VOL = XXX.XXXX CU IN TAU = X.XXXXXX IN % Web = XX.XXXX% Ab = XXX. XXXX SQ IN VOL = XXX.XXXX CU IN SHORT WEB BURN OUT```
13.	(Optional) Evaluate a single motor geometry.	$1 / \mathrm{X}$	TAU $=$?
14.	(Optional) Key in web distance burned to be evaluated,	R/S	```TAU = X.XXXXXXX IN % WEB = XX.XXXX% Ab = XXX.XXXX SQ IN VOL = XXX.XXXX CU IN```
15.	(Optional) Evaluate the same motor geometry with a new offset value, Return to step 8.	\sqrt{x}	OFF SET = ?
16.	To evaluate a new problem go to step 3.		

When operating the program, note that as long as the program registers are not cleared all input values are maintained until they are specifically replaced. If any portion of the input sequence is initiated, the previous value for any input variable will be retained if R / S is entered after the respective prompt. Thus, for an input value to be changed at a prompt, a numeric entry must be made.

Another item that should be noted when operating the program is the value of $\Delta \tau$. If the mandrel is not cocked the value of $\Delta \tau$ is the input as a percentage of $\tau_{\text {pbo }}$. If the mandrel is cocked, $\Delta \tau$ is input as a percentage of $\tau_{m b o}$. In addition, if the mandrel is not cocked, the short web value that is output is $\tau_{\text {sw }}$ and the maximum web value is $\tau_{\text {pbo. }}$. If the mandrel is cocked the short web value is τ_{1} and the maximum web value is $\tau_{m b o}$.

B. Sample Problems

With the operation of the program completely detailed, the next step is to demonstrate the use of the program on some sample problems. For a sample motor geometry the 2×4 ballistic test motor was chosen. The basic dimensions of this motor are as follows:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{C}}=1.00 \mathrm{in} . \\
& \mathrm{L}(0)=3.75 \mathrm{in} . \\
& \mathrm{R}(0)=.75 \mathrm{in} .
\end{aligned}
$$

In the first sample problem, the program exercised was for a grain configuration which was cast with a mandrel cocked at the top only. For this same geometry the "ONE" and "START" options were also demonstrated. The "START" program option allows the user to evaluate the same basic configuration with a different degree of mandrel misalignment. The "ONE" option allows the user to evaluate the present configuration at a single web distance burned. The program was also exercised for two other grain configurations, a grain cast with a mandrel cocked at both the top and bottom and a grain cast with a displaced mandrel. The complete details of these sample problems are as follows:

Mandrel Cocked at Top Only
XEQ -OFCNTR-

THIS PROCRAM DETERMINES THE GEOMETRY OF CP GRAIN WITH ON OFF CENTER OR COCKED MOWBREL

RCASE=?
1.000800909 RUN

COCKEB?
$Y=1, N=0$
1.000000006 RUN

COCKES AT TOP OHLY
$Y=1, N=8$
1.000900000 RUN

BOTTOM BURNING?
$Y=1, N=0$
1.090000008 RUN

TOP BURUING?
$Y=1, N=0$
1.800080008 run

LGRAIM=?
3.750000000 RUN

RGRAIN=?
.750000000 RUW
SFF SET=?
.940080088 RUN
TAU START=?
. 290008800 RUN
TAU STOP=?
.228080800 RUN
DELTA TRU $\%=$?
2.80800809 RUN

GEOMETRY FOR
COCKED
RT TOP OMLY
CP GRAIN HITH
AN OFFSET OF 0.84608 IN RMD 2. ENDS BURNING
SHORT UEB $=6.212264 \mathrm{IN}$
MAX MEB=0. 286939 IN

TAU $=0.28908 \mathrm{JW}$
\% HEB=69.7911 \%
$\mathrm{Ab}=20.6888 \mathrm{SO}$ IN
$v O L=10.7548 \mathrm{CU}$ IN

TRu=0. 285739 IN
\% WEB=71.7011 \%
$\mathrm{Ab}=29.5928 \mathrm{SQ}$ IN
YOL $=18.8731 \mathrm{CU} \mathrm{IN}$
$T A J=8.211478 \mathrm{IN}$
\% MEB=73.7811 \%
肘 $=29.5739$ SQ IN
$4 O L=18.9912 \mathrm{CU}$ IN
T $Q u=0.212264 \mathrm{iN}$
\% WEB=73.9753 \%
$A b=28.5713$ SQ IN
$V O L=11.0974 \mathrm{CU}$ IN
suort mea
BURN OUT
$T Q U=0.217216 \mathrm{IN}$
\% WE8=75.7811 \%
$\mathrm{R}_{\mathrm{B}}=20.2429 \mathrm{se}$ IN
VOL $=11.1886 \mathrm{CU}$ IN
TRU $=0.229990$ IN
\% HEB=76.6713 \%
$\mathrm{A}_{\mathrm{A}}^{\mathrm{b}=19.9221 \mathrm{SO} \text { IN } \mathrm{M}}$
$Y O L=11.1645 \mathrm{CU} \mathrm{IN}$
"START" for Mandrel Cocked at Top Only

KEQ -STRRT"
OFF SET=?
.835988888 RUN
TAU START=?
.230088800 RUN
TAU STOP=?
.249090809 RUN
IELTA TAU \% =?
5.080808006 RIUN

GEOMETRY FOR
COCKED
AT TOP ONLY
CP GRAIN WITH
AN OFFSET OF 8.83508 IN AND 2. ENDS BURNING SHORT HEB $=9.217826$ IN MAX MEB $=9.282365$ IN

TRU $=9.238080 \mathrm{IN}$ \% HEB=81.4556 \% Ab=18.7354 SQ IN $40 \mathrm{~L}=11.3627 \mathrm{CU}$ IN

TRU=9. 248989 IN \% MEB=84.9965 \% Ab=15.6999 SQ IN $Y 0 \mathrm{~L}=11.5358 \mathrm{CU}$ IN
"ONE" for Mandrel Cocked at Top Only

XEQ -OME"
TRU=?
.260009890 RUN

TRU=0. 260990 IN
\% MEB=92.0795 \% $\mathrm{Ab}=4.7974 \mathrm{SO} \mathrm{IN}$ $V O L=11.7486 \mathrm{CJ} \mathrm{IN}$

Mandrel Cocked at Top and Bottom

XEQ "OFCNTR"
THIS PROCRAM
DETERHINES THE GEOMETRY OF CP GRAIN HITH AN OFF CENTER OR COCKED MANDREL

RCASE =?
1.008008080 RUN

COCKED?
$Y=1, N=0$
1.000000080 RUN

COCKED AT TOP ONLY
$Y=1, N=8$
0.008068088 RUN

TOP BURNING?
$Y=1, N=8$
1.898908808 RUN

LGRHIN $=$?
3.750809808 RUN

RCRAIN $=$?
.758800800 RUN

OFF SET=?
.840068008 RUN
TAU START=?
. 280808080 RUN
TAU STOP=?
.220890000 RUN
DELTA TAU $\%=$?
2.880800800 RUN

GEOMETRY FOR COCKED
CP GRAIN HITH
AN OFFSET OF 0.04800 IN
AND 2. ENDS BURNING
SHORT $\mathrm{MEB}=8.214578 \mathrm{IN}$
HAX $\mathrm{HEB}=8.283943 \mathrm{IN}$

TRU $=8.200608 \mathrm{IN}$ \% MEB=78.4368 \% $\mathrm{Pb}=20.6888 \mathrm{SO} \mathrm{IM}$ $40 \mathrm{~L}=10.7548 \mathrm{CU}$ IN

TRU $=8.285679$ IN \% HEB=72.4368 \% $\mathrm{Rb}=26.5922 \mathrm{SB} \mathrm{IN}$ $Y O L=18.8718 \mathrm{CU}$ IN

TRU $=0.211358 \mathrm{IN}$
\% MEB=74.4368 \%
$\mathrm{Ab}=29.5743 \mathrm{SO} \mathrm{IN}$
YOL $=10.9887 \mathrm{CU}$ It'
TROU=0.214578 IN
\% WEB=75.5788 \%
Ab=28.5636 SQ IN
YOL $=11.8558 \mathrm{CU}$ IN
SHORT HEB
BURN OUT

TRU=0.217937 IN
\% MEB=76.4368 \%
$\mathrm{Ab}=28.4475 \mathrm{SQ}$ IN
YOL $=11.1054 \mathrm{CU}$ IN
TAU $=9.228080$ IN
\% HEB=77.4885 \%
Ab=20.1830 SQ IN
YOL=11.1656 CU IN

THIS PROGRAM DETERMINES THE GEOMETRY OF CP GRAIN HITH AN OFF CENTER OR COCKED mandrel

RCASE=?

1.909808880 RUN

COCKED?
$Y=1, N=0$
6.868888006 RUN

LGRAIN=?
3.756800080 RUN

RGRAIN=?
.750800089 RUN
NO. END BURN=?
2.098900909 RUN

OFF SET=?
.848808008 RUN
TRU START=?
.288098988 RUN
TAU STOP=?
.220808006 RUN
DELTA TAU $\%=$?
2.008880908 RIN

GEOMETRY FOR
CP GRAIN HITH
AH OFFSET OF 8.04809 IN
and 2. ENDS BURNING
SHORT UEB=0.218808 IN
MAX MEB $=8.298008$ IN

TRU=8.208006 IN \% MEB=68.9655 \% $A b=28.6888 \mathrm{SQ}$ IN $Y O L=10.7548$ CU IN

TAU=0.285806 IN
\% ME8=70.9655 \%
Ab=28.5918 SQ IN
$Y O L=10.8743 \mathrm{CU}$ IN
TRU=0. 210095 IN
\% MEB=72.4138 \% $\mathrm{Ab}=28.5787 \mathrm{SO}$ IN $40 L=10.9688 \mathrm{CU}$ IN

SHORT HEB BURN OUT

TRU=0.211680 IN
\% MEB=72.9655 \%
$\mathrm{Ab}=18.7221$ SQ IN
YOL $=10.9917$ CU IN
TRU $=0.217400 \mathrm{IN}$
\% MEB=74.9655 \% Ab $=16.5252 \mathrm{SE} \mathrm{IN}$ $Y O L=11.0932 \mathrm{CU}$ IN

TAU=0.228068 IN \% HEB=75.8621 \% $A b=15.8357 \mathrm{SQ}$ IN YOL=11. 1353 CU IN

C．Installation Information
With the operational aspects of the program presented，the next step is to provide the information required to install the program on an $\mathrm{HP}-41 \mathrm{C}$ calculator system．Presented below is a complete listing of the program．From this listing the program can be directly keyed into the calculator．To facilitate an understanding of the program listing，the storage resister assignments are pre－ sented in Table A－2，and to aid in the installation and operation of the program information about the required calculator status is presented in Table A－3．

```
    01*LBL "OFC
NTR*
    OZ FIX9
    03 CF 22
    04 CF 01
    05 CF 02
    06 CF 03
    07 ADV
    08 "THIS PF
OGRAM "
    09 AVIEW
    10 "DETERMI
NES THE*
    11 AYIEW
    12 "GEOMETR
Y OF"
    13 AVIEW
    14 "CP GRAI
H NITH"
    15 AVIEM
    16."PN OFF
CENTER"
    17 AVIEW
    18 "OR COCK
ED"
    19 AVIEW
    20 "MANDREL Input
*
    21 AVIEW
    22 ADV
    23 - RCASE=?
*
    24 PROMPT
    25 FS? 2Z
    26 STO 09
    27 CF 22
    28 COCKED?
29 AVIEM
30 . Y=1,N=
```

日＂
31 PROMPT
32 FS？22
$335 T 040$
34 CF 22
351
36 RCL 40
$37-$
$38 \quad x<=6 ?$
39 SF 02
40 FC？ 92
41 GTD 76
42 －COCKED
日T TOF O＂
43 ＂トHL＇r＂
44 AVIEW
$45 \cdot \gamma=1, N=$
$0 \cdot$
46 PROMPT
47 FS？ 22
48 STO 42
49 CF 22
501
51 RCL 42
52 －
$53 \quad x<=0 ?$
54 SF 0．3
550
56 FC？ 03
$575 T 037$
58 FC？ 03
59 GT0 65
60 －BOTTOM
BURHIHG？＂
61 AVIEW
$62 \cdot Y=1, N=$
0
63 PROMPT
64 FS？22

$115 x<=0 ?$
116 GTO 11
1176
118 STO 17
119 \& LBL 11
$120+L B L$-STA
RT"
121 CF 1
122 - DFF SET
=?
123 PROMPT
124 FS? 22
125 STO 38
126 CF 22
127 RCL 38
$1285 T 008$
129 "TRU STA
$R T=$? ${ }^{-\quad}$
130 PROMPT
131 FS? 22
$1325 T 021$
133 CF 22
134 . TAU STD
P=?
Input
135 PROMPT
136 FS? 22
137 STO 22
138 CF 22
1390
$1405 T 000$
141 XEQ "GEO
142 FS? 02
143 XEQ "GEO
$2 "$
144 RCL 22
145 RCL 21
146 -
$147 x<=0 ?$
148 GTO 20
149 - DELTA T
คU \%=?
150 PROMPT
151 FS? 22
$1525 T 020$
153 FC? 22
154 GTO 20
155 RCL 20
156100
157
158 RCL 16
159 *
160 FC? 02
161 GTO 89
162 RCL 16

Evaluate the same motor configuration with a new mandrel offset

163	/		EB: $=$	
164	RCL 27		212	ARCL X
165	*		213	$\cdots \vdash$ IH"
166	LBL 89		214	AVIEW
167	STO 20		215	RCL 16
168	LBL 20		216	FS? 日2
169	CF 22		217	RCL 27
170	ADV		218	- MAX WEE
171	*GEOMETR		= ${ }^{\text {- }}$	
$Y \mathrm{Y}$	R ${ }^{\text {" }}$		219	AREL X
172	AVIEN		220	*ト IN"
173	FC? 02		221	AVIEW
174	GTO 79		222*	LBL 95
175	"COCKED		223	FIX 9
176	AVIEW		224	ADV
177	FC? 03		225	RCL 21
178	GT0 79		226	STO 06
179	* AT TOP		227	FC? 92
ONLY			228	RCL 10
180	AVIEW	Output	229	FS? 02
181	LBL 79	information	230	RCL 24
182	-CP GRAI	on the case	231	-
N WI	ITH*	being evaluated	232	CHS
183	AVIEW		233	¢< $=0$?
184	FIX 5		234	SF 01
185	RCL 08		235	LEL 30
186	FS? 02		236	FS? 02
187	RCL 38		237	XEQ "GEO
188	- AN OFFS		2	
ET	OF -		238	FS? 02
189	ARCL X		239	GT0 81
190	\cdots - IH.		240	KEQ "GEO
191	AVIEW		-	
192	FIX 0		241	- 81
193	RCL 17		242	XEQ "OUT
194	FC? 02		PUT	
195	GTO 80		243	RCL 22
196	2		244	RCL 21
197	RCL 36		245	-
198	RCL 37		246	$x<=0 \%$
199	+		247	STOP
200	FC? 03		248	RCL 20
201	*		249	$5 T+60$
202	- 186		250	RCL 22
203	"PND -		251	RCL A0
204	ARCL X		252	-
205	\cdots - ENDS		253	$x<=6 ?$
BURN	NING*		254	GT0 35
206	PVIEW		255	RCL 16
207	FIX 6		256	FS? 62
208	RCL 19		257	RCL 27
209	FS? 02		258	RCL OQ
210	RCL 24		259	-
211	- SHORT W		260	$x<=0 ?$

261	GTO 31
262	FS? 01
263	GTO 30
264	RCL 10
265	FS? 02
266	RCL 24
267	RCL 88
268	-
269	X< $=0$
276	GTO 32
271	GTO 30
272	LBL 31
273	RCL 16
274	FS? 02
275	RCL 27
276	STO 08
277	FS? 82
278	XEQ -GEO
2"	
279	FS? 02
289	GTO 82
281	XEQ -GEO
282	LBL 82
283	XEQ
PUT ${ }^{\text { }}$	
284	GTO 75
285	LBL 32
286	RCL 00
287	STO 23
288	SF 11
289	RCL 10
290	FS? 02
291	RCL 24
292	RCL 00
293	
294	$\mathrm{X}=6$?
295	GTO 47
296	RCL 10
297	FS? 02
298	RCL 24
299	STO 0
390	FS? 02
301	XEQ -GEO
$2 \times$	
302	FS? 02
303	GTO 83
304	XEQ -GEO
305	LBL 83
306	XEQ -OUT
PUT	
307	-LBL 47
398	RCL 23
309	STO 00
-:0	QDV

360			411	$x<0$	
360	AVIEW		412	GTO	00
361	RCL 14		413	RCL	09
362	"VOL= ${ }^{\text {P }}$		414	欠イ2	
363	ARCL X		415	RCL	03
364	"F CU IM		416	¢T2	
365			417	-	
365	PVIEM		418	P I	
366	FIX 9		419	*	
367	RTN	- - - - - - -	420	RCL	17
368 *	LBL "GED		421	*	
369			422	RCL	03
369	RCL O1		423	2	
370	RCL DE		424	*	
371	+		425	PI	
372	ST0 03		426	*	
373	RCL 02		427	RCL	04
374	RCL BE		428		
375	RCL 1 ?		429	+	
376	*		430	STO	13
377	FC? 02		431	RCL	09
378	FC? 02		432	$x+2$	
379	STO 04		433	PI	
380	RCL 09		434	*	
381	RCL 08		435	RCL	02
382	+		436	*	
383	RCL O1		437	RCL	09
384	STO 16		438	K+2	
385	$5 T 016$	Calculate the	439	RCL	03
386	RCL 16	geometry for	440	8T2	
387	FS? 02	a motor cast	441	-	
388	RCL 27	with an offset	442	PI	
389	RCL OO	mandrel	443	*	
390	-		444	RCL	04
391	CHS		445	*	04
392	x $=0 ?$		446	-	
393	GTO 01		447	570	14
394	LBL 75		448	360	
395	ADV		449	STO	06
396	- MOTOR B		450	STO	07
URNE	D ${ }^{\text {P }}$		451	RCL	03
397	PVIEW		452	2	
398	"OUT"		453	*	
399	AVIEW		454	PI	
400	ADV		455	*	
401	STOP		456	$5 T 0$	05
402	LBL 01		457	RCL	09
403	RCL 09		458	X+2	
404	RCL 01		459	RCL	03
405	PCL 08		460	x+2	
406	RCL 08		461	-	
407	-TO 10		462	PI	
488	STO 10		463	*	
489	RCL OO		464	STO	19
410	-		465	RTH	

466*	LBL	00	$5 こ 1$	<
467	RCL	03	522	ATAN
468	X+2		523	2
469	RCL	09	524	*
470	x+2		525	STO 07
471	-		526	GTO 94
472	RCL	08	527	LBL 93
473	XT2		528	RCL 18
474	-		529	RCL 15
475	2		530	/
476	-		531	CHS
477	RCL	98	532	ATAN
478	/		533	2
479	STO	15	534	*
480	XT2		535	CHS
481	CHS		536	360
482	RCL	09	537	+
483	Xt2		538	STO 07
484	+		539	LBL 04
485	PBS		540	RCL 15
486	SQRT		541	RCL 88
487	STO	18	542	+
488	RCL	88	543	$x \neq 0$?
489	RCL	03	544	GTO 05
490	+		545	180
491	RCL	09	546	STO 06
492	+		547	GTO 97
493	2		548	LBL 05
494	/		549	RCL 15
495	STO	11	558	RCL 88
496	RCL	03	551	+
497	-		552	$x<0$?
498	RCL	11	553	GTO 06
499	RCL	08	554	RCL 08
500	-		555	RCL 15
591	*		556	+
502	RCL	11	557	1/x
593	RCL	09	558	RCL 18
504	-		559	*
505	*		560	ATAN
506	RCL	11	561	2
507	*		562	*
508	SART		563	STO 06
509	STO	12	564	GTO 07
510	RCL	15	565	-LBL 06
511	$x \neq 0$?		566	RCL 08
512	GTO	02	567	RCL 15
513	189		568	+
514	STO	07	569	CHS
515	GTO	04	570	1 <x
516	LBL	02	571	RCL 18
517	x<0?		572	*
518	GTO	03	573	PTAN
519	RCL	18	574	2
520	RCL	15	575	*

576	CHS		031	＊	
577	360		632	CHS	
578	$+$		633	PI	
579	STO	06	634	RCL 09	
588	LBL	07	635	XT2	
581	PI		636	＊	
582	180		637	RCL 02	
583	，		638	＊	
584	RCL	06	639	$+$	
585	＊		640	STO 14	
586	RCL	03	641	RCL 19	
587	＊		642	x＋2	
588	STO	05	643	RCL 07	
589	RCL	09	644	＊	
596	X＋2		645	RCL 03	
591	RCL	07	646	X＋2	
592	＊		647	RCL 06	
593	RCL	03	648	＊	
594	メイ2		649	－	
595	RCL	86	650	PI	
596	＊		651	＊	
597	－		652	360	
598	PI		653	－	
599	＊		654	RCL 12	
680	360		655	2	
601	－		656	＊	
602	RCL	12	657	＋	
603	2		658	STO 19	
694	＊		659	RTH	
605	＋		660	－LBL－ONE	
606	RCL	17	．．		Calculate the
607	＊		661	CF 11	motor geometry
698	RCL	04	662	－TAU＝？${ }^{\text {－}}$	for a single
689	RCL	05	663	PROMPT	web distance
618	＊		664	FS？ 22	burned
611	＋		665	STO 21	
612	STO	13	666	CF 22	
613	RCL	09	667	RCL 21	
614	×＋2		668	STO 22	
615	RCL	07	669	100	
616	＊		670	STO 20	
617	RCL	83	671	GTO 95	
618	XT2		672	LBL－GEO	
619	RCL	06	$2 \times$		
629	＊		673	RCL 89	
621	－		674	RCL 01	
622	PI		675	－	
623	＊		676	RCL 38	
624	360		677		
625	＇		678	1	
626	RCL	12	679	RCL	
627	2		689	RCL 36	
628	＊		681	＊	
629	＋		6日	FíL 日	
639	RCL	$\underline{4}$	6%		

684	-		Calculate the	739	RCL	37
685	/		geometry for	740		
686	STO	24	a motor cast	741	RCL	00
687	RCL	37	with a cocked	742	*	
688	RCL	38	mandrel.	743	-	
689	*			744	STO	04
690	RCL	02		745	RCL	36
691	,			746	RCL	37
692	1			747	+	
693	+			748	P I	
694	1/X			749	*	
695	RCL	09		759	RCL	09
696	RCL	01		751	$x+2$	
697	-			752	RCL	03
698	*			753	x+2	
699	STO	25		754	-	
700	RCL	37		755	*	
701	RCL	38		756	2	
702	*			757	PI	
703	RCL	02		758	*	
704	<			759	RCL	03
705	CHS			760	*	
706	1			761	RCL	04
707	+			762	*	
708	$1 / X$			763	+	
709	RCL	09		764	STO	13
718	RCL	01		765	RCL	09
711	-			766	X+2	
712	*			767	RCL	93
713	STO	26		768	$x+2$	
714	RCL	09		769	-	
715	RCL	01		770	P I	
716	R			771	*	
717	RCL	38		772	RCL	04
718	+			773	*	
719	RCL	38		774	CHS	
720	RCL	36		775	RCL	89
721	*			776	X+2	
722	RCL	02		777	PI	
723	/			778	*	
724	1			779	RCL	02
725	+			780	*	
726	/			781	+	
727	STO	27		782	STO	14
728	RCL	08		783	RTN	
729	RCL	24		784	LBL	71
730	-			785	RCL	06
731	$x>0 ?$			786	RCL	25
732	GTO	71		787	-	
733	RCL	01		788	$x>0 ?$	
734	RCL	08		789	GTO	72
735	+			790	RCL	00
736	STO	03		791	RCL	37
737	RCL	02		792	*	
738	RCL	$3 E$		793	STO	29

$\begin{aligned} & 794 \\ & 795 \end{aligned}$	$\begin{aligned} & \text { RCI } \\ & \text { RC: } \end{aligned}$	09 01
796	R	
797	RCL	00
798	-	
799	RCL	38
850	/	
801	RCL	02
802	*	
803	ST0	29
804	STO	41
805	RCL	02
806	RCL	日0
807	RCL	36
898	*	
809	-	
810	STO	30
811	RCL	28
812	-	
813	ST0	04
814	XEQ	- ARE
A"		
815	RCL	29
816	RCL	28
817	-	
818	STO	23
819	RCL	31
820	*	
821	ST+	13
822	RCL	23
823	RCL	34
824	*	
825	ST-	14
826	RTN	
827	LBL	72
828	RCL	E8
829	RCL	26
830	-	
831	$x>0 ?$	
832	GTO	73
833	RCL	37
834	RCL	00
835	*	
836	ST0	28
837	STO	41
838	RCL	62
839	RCL	00
840	RCL	36
841	*	
842	-	
843	STO	38
544	RCL	28
345	-	
946	STO	24
: $: 47$	XEG	- APE

A"
848 RTM
849*LBL 73
856 RCL 80
851 RCL 27
852 -
$853 x>0 ?$
854 GTD 75
855 RCL 80
856 RCL 09
857 -
858 RCL 01
859 +
860 RCL 02
861 *
862 RCL 38
863 /
864 5T0 28
865 STO 41
866 RCL 02
867 RCL 10
868 RCL 36
869 *
$870-$
871 ST0 30
872 RCL 28
873 -
874 STO 04
875 XEQ *ARE
${ }^{\boldsymbol{A}}$
876 RTN
87ア・LBL - RRE
A-
878 RCL 28
879 RCL 02
880
881 RCL 38
882 *
883 5T0 08
884 XEQ -GEO
-
885 RCL 05
886 STO 31
887 RCL 19
888 STO 34
889 RCL 3R
898 RCL 02
891
892 RCL 38 Integrate to
893 *
894 ST3 08
895 XEG -GED
\cdot
BGEFEL BS Approximation
obtain surface area and volume using a trapezoidal rule. pproximation

898	RCL 19	935	RCL 19
899	STO 35	936	ST+ 39
909	RCL 31	937	RCL 17
901	RCL 33	938	ST+ 41
902	+	939	CF 21
903	2	946	YIEW 41
904	<	941	SF 21
905	STO 32	942	RCL 41
906	RCL 34	943	1.00001
907	RCL 35	944	*
908	+	945	RCL 30
909	2	946	-
910	/	947	$x<0 ?$
911	STO 39	948	GTO 99
912	CF 21	949	RCL 17
913	VIEW 41	950	ST* 32
914	SF 21	951	ST* 39
915	RCL 30	952	RCL 34
916	RCL 41	953	RCL 37
917	-	954	*
918	10	955	ST+ 32
919	-	956	RCL 35
929	STO 17	957	RCL 36
921	ST+ 41	958	*
922	CF 21	959	ST+ 32
923	VIEW 41	969	RCL 32
924	SF 21	961	STO 13
925	LBL 99	962	RCL 09
926	RCL 41	963	メナ2
927	RCL 02	964	PI
928	'	965	*
929	RCL 38	966	RCL 02
936	*	967	*
931	STO 08	968	RCL 39
932	XEQ -GEO	969	-
"		970	STO 14
933	RCL 05	971	RTN
934	Sit 32	972	END

TABLE A-2. Register Assignments

RESISTER	VARIABLE	UNITS
00	τ	in
01	R(0)	in
02	L(0)	in
03	R	in
04	L	in
05	P	in
06	θ_{1}	deg
07	θ_{2}	deg
08	$\Delta \mathrm{X}$	in
09	R_{c}	in
10	$\tau_{\text {sw }}$	in
11	S	in_{2}
12	A_{1}	in_{2}
13	A_{b}	in_{3}
14	V	in ${ }^{3}$
15	X_{I}	in
16	$\tau_{\text {pbo }}$	in
17	$\mathrm{N}_{\text {eb }}, \Delta Z$	NA, in
18	Y_{I}	in_{2}
19	A_{cr}	$1 n^{2}$
20	$\Delta \tau$	in
21	${ }^{\text {c start }}$	in
22	$\tau_{\text {stop }}$.	in
23	used	NA
24	τ_{1}	in
25	τ_{2}	in
26	τ_{3}	in
27	$\tau_{\text {mbo }}$	in
28 29	$\mathrm{Z}_{\text {ub }}$	in
30	$z_{\text {top }}$	in
31	$\mathrm{P}\left(\mathrm{Z}_{\text {bot }}\right)$	in
32	$\mathrm{P}\left(\mathrm{Z}_{\mathbf{u b}}\right)$, P	in, in
33	$\mathrm{P}\left(\mathrm{Z}_{\text {top }}\right)$	in 2
34 35	$A_{c r}\left(Z_{\text {bot }}\right)$	in ${ }^{2}$
36	$\underset{\mathrm{N}_{\text {top }}}{\mathrm{A}_{\mathrm{Cr}}}\left(\mathrm{Z}_{\text {toD }}\right)$	NA
37	N bot	NA
38	$\Delta \mathrm{X}_{\mathrm{T}}$	In_{2}
39	$\sum \mathrm{A}_{\mathrm{c}} \mathrm{r}$	$1 n^{2}$
40	used	NA_{2}
41	2	in ${ }^{2}$
42	used	NA

TABLE A-3. Calculator Status

Calculator mode		USER	
Size		43	
Program registers		276	
Total registers		319	
	I+	OFCNTR	
	1/X	ONE	
	X	START	
$\begin{aligned} & \infty \\ & \vec{Z} \\ & \tilde{0} \\ & \text { in } \\ & \text { N } \\ & \text { N } \end{aligned}$	Flag No.	Set Flag Indicates	Cleared Flag Indicates
	01	Web distance burned has exceeded the short web	Web distance burned has not exceeded the short web
	02	Mandrel is Cocked	Mandrel is not cocked
	03	Mandrel is cocked at top only	Mandrel is cocked top and bottom

MISALIGNED 2×4 MOTOR

The 2×4 ballistic test motor is the basic burning rate characterization motor employed by the Propulsion Directorate. This motor has a cylindrical port and in normal applications has both end surfaces uninhibited.

Initial port radius: $R(0)=.75$ in

Initial grain length: $\mathrm{L}(0)=3.75 \mathrm{in}$

Case Radius:

$$
\mathrm{R}_{\mathrm{c}}=1.00 \mathrm{in}
$$

This motor was used as an example to demonstrate the application of the misaligned motor geometry model. For this motor the burning surface area histories were generated for geometries reflecting a perfectly aligned mandrel, a displaced mandrel, a mandrel cocked at the top, and a mandrel cocked at both the top and bottom. For the three modes of mandrel misalignment, surface area histories were generated for $\Delta \mathrm{X}_{\mathrm{T}}$ values of 0.00 in, , 0.01 in, , $0.02 \mathrm{in} ., 0.03$ in., 0.04 in., 0.05 in., 0.06 in., 0.07 in., 0.08 in., 0.09 in., and 0.10 in. All these surface area histories were generated using the HP-41C calculator and the previously detailed program. The burning surface area history for an aligned 2×4 motor grain is presented in Figure B-1. The burning surface area histories for a 2×4 motor cast with a displaced mandrel is presented in figure B-2. The burning surface area histories for a 2×4 motor cast with a mandrel cocked at the top is presented in Figure B-3. The burning surface area histories for a 2×4 motor cast with a mandrel cocked at both the top and bottom is presented in Figure $B-4$.

Figure B-1. Burning surface area history of 2×4 motor cast with no mandrel misalignment.

Figure B-2. Burning surface area history of 2×4 motor cast with a displaced mandrel.

Figure B-3. Burning surface area history of 2×4 motor cast with a mandrel cocked at the top.

$$
\bar{\square}
$$

Figure B-4. Burning surface area history of 2×4 motor cast with a mandrel cocked at the top and bottom.
Aerotherm/Acurex
Attn: Mr. Michael Abbett/8-8800
485 Clyde Avenue
Mountain View, CA 94042
Thiokol CorpiWasatch Div
Attn: Ralph Abe1, MS 281
PO Box 524
Brigham City, UT 84302
AFRPL/DYC
Attn: Robert L. Acree
Edwards AFB, CA 93523
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103
Hercules, Inc.
Attn: George Aoki
P. O. Box 98
Magna, UT 84044
NASA/Lewis Research Center
Attn: Mr. Carl Auckerman/MS 501-6 1
21000 Brookpark Road
Cleveland, OH 44135 44135
LTV Aerospace Corporation
Attn: Mr. G. S. Bahn 1
3221 N. Armistead Avenue
Hampton, VA 23366
Hercules, Inc./Bacchus Works
Attn: R. J. Barbero 1
PO Box 98
Magna, UT 84044
AFRPL/DYC
Attn: M. Elizabeth Barger 1
Edwards AFB, CA 93523
AFRPL/MKPA
Attn: Mr. Charles W. Beckman/MS 24 1
Edwards AFB, CA 93523
No. Copies1
Hercules, Inc.
Attn: Gary D. Berg1
P. O. Box 98
Magna, UT 84044
NASA, Lewis Research Center
Attn: Mr. D. Bittker, MS 54-6 21000 Brookpark Road
Cleveland, OH 44135
Textron, Inc./Bell Aerospace Co Div Attn: Mr. A. H. Blessing
P. O. Box 1
Buffalo, NY 14240
Hercules, Inc.
Attn: Rick Bliss 1
P. O. Box 98
Magna, UT 84044
Naval Weapons Center
Attn: Dr. Thomas L. Boggs/Code 388 1
China Lake, CA 93555
NASA/Goddard Space Flight Ctr
Attn: William Bolster
Glenn Dale Road
Greenbelt, MD 20771
Thiokol Corp/Wasatch Division
Attn: Stan Boraas1
Brigham City, UT 84302
Hercules, Inc.
Attn: David L. Boyd, K17C 1
PO Box 98
Magna, UT 84044
NASA HQ
Attn: Yvonne Brill, Code MJR-11 1
Washington, DC 20546
Aerojet Tactical Systems Co.
Attn: Robert Brogan 1
P. O. Box 13400
Sacramento, CA 95813
Hercules, Inc.
Attn: William Ted Brooks
P. O. Box 548
McGregor, TX 76657
AFRPL/LKX
Attn: Steve L. Brown 1
Edwards AFB, CA 93523
Thiokol Corp/Elkton Div
Attn: Dr. Winston N. Brundige
P. O. Box 241
Elkton, MD 21921
United Technologies Research Center
Attn: Mr. W. G. Burwell
Silver Lane
East Hartford, CT 06108
NASA, Langley Research Center
Attn: Dr. D. Bushnell, MS 163
Hampton, VA 23365
The Marquardt Company
Attn: Mr. John G. Campbell 1
16555 Saticoy Street
Van Nuys, CA 91409
United Technologies/Pratt \& Whitney Aircraft
Attn: Mr. R. G. Carroll, MS E-40 1
P. O. Box 2691
W. Palm Beach, FL 33401
United Technologies/Chemical Systems Div
Attn: Mr. Robert E. Casner 1
P. O. Box 358
Sunnyvale, CA 94086
McDonnell Douglas Corp
Attn: Leon H. Cassutt 1
5301 Bolsa Ave
Huntington Beach, CA 92647
SEA Inc
Attn: T. Cedecci 1
354 Brookhollow Drive
Santa Ana, CA 92705
Aerojet Strategic Propulsion Co.
Attn: Gene 0. Chan/Bldg. 2019, Dept. 55201
P. O. Box 15699C
Sacramento, CA 95813
Aerospace Corp.
Attn: I-Shih Chang 1
2350 E. El Segundo Blvd., P. O. Box 92957
El Segundo, CA 90009
KVB Engineering
Attn: Mr. Steve Cherry 1
Irvine, CA 92714
SEA Incorporated
Attn: Mr. Douglas E. Coats 1
1560 Brookhollow Drive
Santa Ana, CA 92705
Norman Cohen Professional Services
Attn: Norman S. Cohen 1
141 Channing Street
Redlands, CA 92373
Washington State University
Dept. of Mechanical Engineering
Attn: Dr. C. T. Crowe 1
Pullman, WA 99163
Lockheed Palo Alto Research Laboratory
Attn: Joseph C. Crowley, B-204/D-5235 1
3251 Hanover Street
Palo Alto, CA 94304
Hercules, Inc.
Attn: Dr. Weldon L. Daines, MS K18 1
P. O. Box 98
Magna, UT 84044
Hercules, Inc./Bacchus Works
Attn: Dennis K. David/K12K 1
P. O. Box 98
Magna, UT 84044
Naval Weapons Center
Attn: Dr. Ronald L. Derr/Code 388 1
China Lake, CA 93555
Aerojet Tactical Systems
Attn: Mr. Mike J. Ditore/Bg 2019, Dp 3010 1
P. O. Box 13400
Sacramento, CA 95813
JHU/APL/CPIA (Century Plaza)
Attn: Ms. Debra S. EgglestonJohns Hopkins Road
Laurel, MD 20707
Naval Weapons Center
Attn: P. M. Escallier1
Code 3273
China Lake, CA 93555
Naval Weapons Center
Attn: Mr. Robert Fabans/Code 3273China Lake, CA 93555
University of Utah, Dept. of Mech. Eng.
Attn: Prof. Gary A. Flandro Merrill Eng. Bldg, or MEB 3008 Salt Lake City, UT 84112
Talley Industries
Attn: Michael Fling 1
P. O. Box 849
Mesa, AZ 85201
NASA/Marshall Space Flight Center Attn: Mr. D. J. Forsythe, EP 25 Huntsville, AL 35812 1
Auburn UniversityAerospace Engineering Dept.
Attn: Dr. W. A. Foster
Auburn, AL 36849
Lockheed Msl \& Space/Res \& Engr Ctr Attn: Mr. J. A. Freeman 1
P. O. Box 1103 West Station Huntsville, AL 35807
AFRPL/MKP
Attn: Mr. Robert L. Geisler
Edwards AFB, CA 93523
Rockwell International/Rocketdyne DivAttn: Mr. Wally Geniec1
6633 Canoga Ave
Canoga Park, CA 91304
AFRPL/LKX
Attn: Dr. Daweel George 1
Edwards AFB, CA 93523
McDonnell Douglas Astronautics Co.
Attn: Walt Glowski 1
5301 Bolsa Avenue
Huntington Beach, CA 92647
NASA/Lewis Research Center
Attn: Mr. S. Gordon 1
21000 Brookpark Road
Cleveland, OH 44135
The Boeing Company
Attn: Mr. Richard L. Green/M/S 8C-05 1
P. 0. Box 3999
Seattle, WA 98124
NASA Marshall Space Flight Center
Attn: Mr. K. W. Gross, EL-241
Marshall Space Flt Ctr., AL 35812
United Technologies/Chemical Sys Div
Attn: Ralph Hammond1
P. O. Box 358
Sunnyvale, CA 94088
TRW Inc Redondo Beach
Attn: Mr. David P. Harry/Bldg 01, 2081
One Space Park
Redondo Beach, CA 902781
Hercules, Inc.
Attn: Craig Haslam 1
P. O. Box 98
Magna, UT 84044
Thiokol Corporation/Wasatch Division
Attn: Robert Hatch 1P. O. Box 542Brigham City, UT 84302
JHU/APL/CPIA (Century Plaza)
Attn: Mr. H. F. Hege 1
Johns Hopkins Road
Laurel, MD 20810
Atlantic Research Corporation
Attn: Mr. Charles Henderson 1
5390 Cherokee Ave.
Alexandria, VA 22314
Thiokol Corp/Wasatch Division
Attn: Roger R. Hendrickson Brighan City, UT 84302
United Technologies/Chemical Systems Div
Attn: Dr. Robert W. Hermsen 1
1050 E. Arques Ave, P. O. Box 358
Sunnyvale, CA 94086
Thiokol Corporation/Wasatch Division
Attn: Kelly Hess 1
P. O. Box 524
Brigham City, UT 84302
Purdue University
M E Department
Attn: Dr. Joe D. Hoffman 1
W. Lafayette, IN 47907
Lockheed Ms1 \& Space Co.
Attn: Mr. Robert Housman/Dept 6213, Bg 104
1111 Lockheed Way
Sunnyvale, CA 94086 1
KVB Engineering
Attn: Mr. S. C. (Kim) Hunter 1
P. O. Box 19518Irvine, CA 92714
Aerojet Liquid Rocket Company
Attn: Mr. J. I. Ito, Sec 9734 1
P. O. Box 13222
Sacramento, CA 95813
Atlantic Research Corporation
Attn: Frank W. Jordan 1
7511 Wellington Road Gainesville, VA 22065
NASA/Johnson Space Center
Attn: Mr. R. C. Kahl, EP21
Road 1
Houston, TX 77058
Thiokol Corp/Wasatch Division
Attn: Thomas Kallmeyer 1
P. 0. Box 542
Brigham City, UT 84302
Boeing Company
Attn: Mr. John Kearnes/MS 8C-05 1
P. O. Box 3999
Seattle, WA 98124
Hercules, Inc.
Attn: D. O. Keith 1
P. O. Box 98
Magna, UT 84044
Thiokol Corporation/Wasatch Division
Attn: Donald M. Ketner 1
P. 0. Box 524
Brigham City, UT 84302
JHU/APL c/o SSPO
US Navy, Attn: J. F. Kincaid 1
Washington, DC 20376
Atlantic Research Corp
Attn: Dr. Merrill K. King 1
5390 Cherokee Ave.
Alexandria, VA 22314
Thiokol Corp/Elkton Div
Attn: Mr. T. Kirschner 1
Elkton, MD 21904
KVB Engineering
Attn: Mr. J. R. Kliegel 1
P. O. Box 19518
Irvine, CA 92714
Naval Ordnance Station
Attn: Dave Krause 1Code 5252PIndian Head, MD 20640
United Technologies/Chemical Systems Div
Attn: Mr. J. T. Lamberty, Jr.1
1050 E. Arques Ave.
Sunnyvale, CA 94086
The Aerospace Corporation
Attn: Dr. Ellis M. Landsbaum/D5/17211
P. O. Box 92957
Los Angeles, CA 90009
Hercules, Inc./Bacchus Works
Attn: Eugene W. Langley 1
P. O. Box 98
Magna, UT 84044
Thiokol Corporation
Attn: Gordon Lasley, MS 281 1
P. O. Box 524
Brigham City, UT 84302
Thiokol Corp/Wasatch Division
Attn: Lionel H. Layton1
P. 0. Box 542
Brigham City, UT 84302
Aerojet Strategic Propulsion Company
Attn: Bob Lee 1
P. O. Box 15699 C
Sacramento, CA 95813
AFRPL/PAC
Attn: Mr. Jay N. Levine 1
Edwards AFB, CA 93523
Sverdrup Technology, Inc./AEDC
Attn: Charles C. Limbaugh
Arnold AFS, TN 37389
United Technologies/Pratt \& Whitney
Attn: Mr. C. D. Limerick 1
P. O. Box 2691
W. Palm Beach, CA 33402
Pan American World Services
Attn: Rankin R. Little, Jr., ETF-A 1
Arnold AFS, TN 37389
Naval Ordnance Station
Attn: Mr. J. Michael Lyon/Code 5252G 1
Indian Head, MD 20640
Aerojet Strategic Propulsion Company
Attn: Anston Ma1
P. O. Box 15699C
Sacramento, CA 95813
NASA Marshall Space Flight Center
Attn: Charles Martin
Marshall Space Flt Ctr., AL 35812
Sverdrup Technology, Inc./AEDC
Attn: W. R. Martindale
Arnold AFS, TN 37389
United Technologies/Pratt \& Whitney Aircraft Attn: Mr. T. C. Mayes, Jr. 1
W. Palm Beach, FL 33401
Martin Marietta Corp.
Attn: J. Wayne McCain/MS D-6034 1
P. O. Box 179
Denver, $\mathbf{C 0}$ 80201
Hercules, Inc./Bacchus Works
Attn: Carl M. Mihlfeith 1
P. O. Box 98
Magna, UT 84044
Olin Corp/Marion Works
Attn: Indu Mishra 1
P. O. Drawer G (Crab Orchard Nat1 Refuge)
Marion, IL 62959
Aerojet Strategic Propulsion Co/Bldg 2022C
Attn: J. D. Mockenhaupt/Dept 5510
P. O. Box 15699C
Sacramento, CA 95813
Thiokol Corp/Wasatch Division
Attn: William 0. Munson 1
Brigham City, UT 84302
Thiokol Corporation
Huntsville Division
Attn: Jesse E. Murph
Huntsville, AL 35807
Naval Postgraduate School
Attn: David Netzer, Code 67Nt1
SEA, IncorporatedAttn: Mr. Gary R. Nickerson1
1560 Brookhollow Drive
Santa Ana, CA 92705
Commander
Ogden ALC/MANPA
Attn: Kent Nomura/Bldg. 1941 1
Hill AFB, UT 84056
NASA/Langley Research Center
Attn: G. Burton NorthamHampton, VA 23665
Thiokol Corp/Huntsville Div
Attn: Mr. T. F. Owens1
Redstone Arsenal
Huntsville, AL 35807
APRPL/LKDH
Attn: Dennis G. Pelaccio 1
Edwards AFB, CA 93523
Lockheed Msl \& Space Co.
Attn: Mr. M. Penny 1
P. O. Box 1103
Huntsville, AL 35807
Hercules, Inc./Bacchus Works
Attn: Richard Peterson 1
P. O. Box 98
Magna, UT 84044
Aerojet Liquid Rocket Company Attn: Mr. Jerry L. Pieper 1
P. O. Box 13222
Sacramento, CA 95813
Aeronautical Research Assoc. of Princeton
Attn: Mr. Blain Pierce 1
P. O. Box 2229
Princeton, NJ 08540
Atlantic Research Corp.
Attn: Mr. I. Mike Procinsky 1
7511 Wellington Road
Gainesville, VA 22065
Continuum, IncorporatedAttn: Mr. Robert J. Prozan1
4717 University Drive, Suite 102
Huntsville, al 35805
NASA Marshall Space Flight Center Attn: Mr. Robert Richmond 1
Code EP-24
Marshall Space Flight Ctr, AL 35812
AFRPL/MKPA
Attn: Dr. F. Roberto 1
Edwards AFB, CA 93523
United Technologies/Chemical Sys Div Attn: Forrest A. Robertson 1
1050 E. Arques Ave.
Sunnyvale, CA 94086
Sverdrup Technology, Inc./AEDC
Attn: R. Bruce Runyan, MS 500 EC6Arnold AFS, TN 37389
Thiokol Corp/Wasatch Division
Attn: Dr. Mark Salita, MS 281
P. 0. Box 542
Brigham City, UT 84302
Aerojet Liquid Rocket Company
Attn: Mr. J. W. Salmon1
P. O. Box 13222
Sacramento, CA 95813
Sverdrup Technology Inc./AEDC
Attn: J. L. Saunders Arnold AFS, TN 37389
Thiokol Corp/Wasatch Division
Attn: Mr. L. Sayer1
P. O. Box 524
Brigham City, UT 84302
Aerojet Tactical Systems
Attn: J. R. Seibert 1
P. O. Box 13400
Sacramento, CA 95813
AFRPL/LKDH
Attn: Mr. Curt C. Selph, MS 241
Edwards APB, CA 93523
No. Copies
Auburn University
School of Aerospace Engr.
Attn: Prof. Richard H. Sforzini
Auburn, AL 36830
NASA/Marshall Space Flight Center
Attn: Mr. B. W. Shackelford/Code EP 25
Huntsville, AL 35812
Sverdrup Technology, Inc./AEDC
Attn: Martha A. Simmons 1
Arnold AFS, TN 37389
Hercules, Inc./Bacchus Works
Attn: Mark Skidmore 1
P. O. Box 98
Magna, UT 84044
Lockheed Missiles \& Space Company
Rttn: Mr. S. D. Smith
P. O. Box 1103, West Station
Huntsville, AL 35807
McDonnell Douglas Corp/Astro. Co.
Attn: Mr. Joseph Smuckler, Dept. E2431
P. O. Box 516
St. Louis, MO 63166
Rockwell International/Rocketdyne Division
Attn: Mr. George Sopp, D/545-113, AC06 1
6633 Canoga Ave
Canoga Park, CA 91304
Goodyear Aerospace Co.
Attn: John T. Stephens 1
1210 Massillon Road
Akron, OH 44315
NASA, Headquarters
Attn: Mr. F. W. Stephenson, Jr., RP 1
600 Independence Avenue, SW, Room 625
Washington, DC 20546
Talley Industries of Arizona
Attn: Halley Stevens 1
P. O. Box 849
Mesa, AZ 85201
United Technologies/Chemical Systems Div.
Attn: Perry W. Stout 1
1050 E. Arques Ave. Sunnyvale, CA 94088
Naval Weapons Center
Attn: Dr. Charles J. Thelen/Code 3205
China Lake, CA 93555
NASA/Johnson Space Center
A+tn: Mr. J. G. Thibodaux, BP
Houston, TX 77058
Commander
Ogden ALC (MANPA)
Attn: Mr. John A. Thompson/Bldg. 1941 1
Hill Air Force Base, UT 84056
Sverdrup Technology, Inc./AEDC
Attn: Floyd E. Turner, Jr., EC5, MS500 1
Arnold AFS, TN 37389
Lockheed Msl \& Space Company
Attn: Bert Vincent/Org 83-10, B1dg. 154
P. O. Box 504
Sunnyvale, CA 94086
TRW Systems Group/DSSG
Attn: Mr. Thomas J. Walsh, Bldg 523-315 1
P. O. Box 1310
San Bernardino, CA 92402
Hercules, Inc.
Attn: E. W. Warr
P. O. Box 98
Magna, UT 84044
Rockwell International/Rocketdyne Div
Attn: Mr. W. T. Webber 1
6633 Canoga Ave Canoga Park, CA 91304
Hercules, Inc.
Attn: Paul W. Wehan 1
P. O. Box 98
Magna, UT 84044
AFRPL/CA
Attn: Dr. R. R. Welss 1
Thiokol Corp/Huntsville Div
Attn: Mr. R. Harold Whitesides, Jr.1
Redstone Arsenal, Bldg 7611
Huntsville, AL 35807
Commander
AFRPL
Attn: Frank J. Wilson 1
Edwards AFB, CA 93523
United Technologies/Chemical Systems Division
Attn: Harold A. Wright 1
1050 E. Arques Ave
Sunnyvale, CA 94086
Vought Corporation
Attn: A. H. Ybarra, MS 220-62 1
P. O. Box 225907
Dallas, TX 75265
Hercules, Inc./Bacchus Works
Attn: R. J. Zeamer
P. O. Box 98
Magna, UT 84044
CPIA Mailing List 100
DRCPM-PE 1
DRCPM-RS 1
DRSMI-QE 1
-R, Dr. McCorkle 1
Dr. Rhoades 1
-RK 1
-RK, Mr. Ifshin 1
-RKC 1
-RKF 1
-RKK 1
-RKL 1
-RKL, Mr. Dreitzler 1
-RKP 1
-RKA, Jay Lilley 20
Michael Morrison 1
Mr. Radke 1
-RDK, Dr. Mikkelson 1
-RPR 15
-RPT 1

$$
-L P
$$1

US Army Materiel System Analysis ActivityATTN: DRXSY-MP1
Aberdeen Proving Ground, MD 21005

